Learn to program

This is my contribution to the Accretionary Wedge geoblogfest, number 38: Back to School. You can read all about it, and see the full list of entries, over at Highly Allochthonous. To paraphrase Anne's call to words:

What do you think students should know? What should universities be doing better? What needs do you see for the rising generation of geoscientists? What skills and concepts are essential? How important are things like communication and quantitative skills versus specific knowledge about rocks/water/maps?

Learn to program

The first of doubtless many moments of envy of my kids' experience of childhood came about two years ago when my eldest daughter came home from school and said she'd been programming robots. Programming robots. In kindergarten. 

For the first time in my life, I wished I was five. 

Most people I meet and work with do not know how to make a computer do what they want. Instead, they are at the mercy of the world's programmers and—worse—their IT departments. The accident of the operating system you run, the preferences of those that came before you, and the size of your budget should not determine the analyses and visualizations you can perform on your data. When you read a paper about some interesting new method, imagine being able to pick up a keyboard and just try it, right now... or at least in an hour or two. This is how programmers think: when it comes to computers at least, their world is full of possibility, not bound by software's edges or hardwired defaults.

Stripped down cameraI want to be plain about this though: I am not suggesting that all scientists should become programmers, hacking out code, testing, debugging, and doing no science. But I am suggesting that all scientists should know how computer programs work, why they work, and how to tinker. Tinkering is an underrated skill. If you can tinker, you can play, you can model, you can prototype and, best of all, you can break things. Breaking things means learning, rebuilding, knowing, and creating. Yes: breaking things is creative.

But there's another advantage to learning to program a computer. Programming is a special kind of problem-solving, and rewards thought and ingenuity with the satisfaction of immediate and tangible results. Getting it right, even just slightly, is profoundly elating. To get these rewards more often, you break problems down, reducing them to soluble fragments. As you get into it, you appreciate the aesthetics of code creation: like equations, computer algorithms can be beautiful.

App Inventor blocks editorThe good news for me and other non-programmers is that it's never been faster or simpler to give programming a try. There are even some amazing tools to teach children and other novices the concepts of algorithms and procedures; MIT's Scratch project is a leader in that field. Some teaching tools, like the Lego MINDSTORMS robotics systems my daughter uses, and App Inventor for Android (right), are even capable of building robust, semi-scientific applications

Chances are good that you don't even need to install anything to get started. If you have a Mac or a Linux machine then you already have instant access to scripting-cum-programming languages like the shell, AWK, Perl and Python. There's even a multi-language interpreter online at codepad.org. These languages are very good places to start: you can solve simple problems with them very quickly and, once you've absorbed the basics, you'll use them every day. Start on AWK now and you'll be done by lunchtime tomorrow. 

For what's it's worth, here are a few tips I'd give anyone learning to program:

  • Don't do anything until you have a specific, not-too-hard problem to solve with a computer
  • If you can't think of anything, the awesome Project Euler has hundreds of problems to solve
  • Choose a high-level language like Python, Perl, or perhaps even Java; stay away from FORTRAN and C
  • Buy no more than one single book, preferably a thick one with a friendly title from O'Reilly
  • Don't do a course before you've tinkered on your own for a bit, but don't wait too long either (here's one)
  • Learn to really use Google: it's the fastest way to figure out what you want to do
  • Have fun brushing up on your math, especially trig, time series analysis, and inverse theory
  • Share what you build: help others learn and get more open

Bust out of the shackles of other people's software: learn to program!

Four days of oil

The long-awaited news of oil in the Falkland Islands arrived in May last year when UK company Rockhopper Exploration drilled a successful well in the North Falkland Basin. After testing a second well, the estimated volume of recoverable oil in the field, called Sea Lion, was upped last month to 325 million barrels. A barrel is one bathtub, or 42 gallons, or 159 litres, or 0.159 m3. Let's be scientific and stick to SI units: the discovery is about 52 million cubic metres. Recoverable means the oil can be produced with foreseeable technology; about half the oil will likely not be produced and remain in the ground forever. Or until humans are desperate enough to get it out.

On its own, a claim of 325 million barrels is meaningless to those outside the oil business. But this is a good-sized discovery, certainly a company-maker for a small player like Rockhopper. But as we read news of recent big discoveries in the Gulf of Mexico by BP, Chevron and ExxonMobil, it's worth having some sort of yardstick to help visualize these strange units and huge numbers...

Read More

News of the week

A quick round up of geosciencey tech news at the end of a busy week at SEG.

Mmm, open source

Visualization company Kitware, makers of open source viz software Paraview, have released a new version of VTK, their toolkit for developers. Version 5.8 has new and improved Python wrappers and support for openGL inside documents. They are also offering free online courses for much of their technology. If you don't know their stuff, now's the time to check it out!

Real-time data toolbox

Twitter and geophysics? Maybe: they announced some open source goodness this week with their Storm library for real-time analysis of massive data streams. They developed it for analysing breaking news and global events, but we think it might have application in all kinds of real-time data processing problems like microseismic and production monitoring. Find the project on GitHub.

Not just another software company?

Dynamic Graphics, a small California company, caught our eye. Their low profile seems about to change, as their 'quantitative visualization' software looks ready to compete with anyone. Their focus on 4D and well-planning pits them against outfits like Transform Software, Down Under GeoSolutions, and of course all the usual suspects.

Learn Python!

Enthought are the leaders in scientific programming and especially support for Python, as well as on-demand development. They now offer a regular Python programming course just for geophysicists, and tour all over the world with it. The next edition is in Houston, 2–4 November. If you ever wanted to dabble with code, this is your chance: Python is easy to learn and very powerful.

This regular news feature is for information only. We aren't connected with any of these organizations, and don't necessarily endorse their products or services. Python is a trademark of the Python Software Foundation. ParaView and VTK are trademarks of Kitware. Storm is a trademark of Twitter, Inc.

Workshop? Talkshop

Day 4 of the SEG Annual Meeting. I attended the workshop entitled Geophysical data interpretation for unconventional reservoirs. It was really about the state of the art of seismic technologies for shale gas exploration and exploitation, but an emergent theme was the treatment of the earth as an engineering material, as opposed to an acoustic or elastic medium.

Harvey Goodman from Chevron started the workshop by asking the packed room, "are there any engineers in the room?" Hilariously, a single lonesome hand was raised. "Well," he said "this talk is for you." Perhaps this wasn't the venue for it; so much for spreading cross-disciplinary love and the geophysical technical vernacular. 

Mark Zoback from Stanford presented decades worth of laboratory measurements on the elastic/plastic properties of shales. Specifically the concentrations of illite and TOC on mechanical stiffness and creep. When it came to questions, he provided the most compentent and cogent responses of the day: every one was gold. Your go-to guy for shale geomechanics.

Marita Gading of Statoil presented some facinating technology called Source Rock from Seismic (we mentioned this on Monday)—a way to estimate total organic carbon from seismic for basin modeling and play evaluation. She listed the factors controling acoustic properties of shales as

  1. organic content;
  2. compaction or porosity;
  3. lithotype and mineral composition;
  4. seismic to microscale anisotropy.

She showed an empirically derived acoustic impedance transform coupled with more interpretive methods, and the results are compelling. It's not clear how well this might work in ancient shales onshore, but it has apparently worked for Statoil in younger, offshore basins.

Galen Treadgold from Global Geophysical gave a visually stunning presentation showing the value of expansive data sets in the Eagle Ford shale. He showed 1000 km2 of 3D seismic that had been stitched together, highlighting the need to look at a regional picture. Patchwork data fails to give the same clarity of variation in mechanical stratigraphy.

The session shifted to the state of microseismic technology and 'getting beyond the dots'. Speakers from rival companies MicroSeismic, ESG Solutions, and Pinnacle described how microseismic waveforms are now being used to resolve moment tensors. These provide not only the location and magnitude but also the failure characteristic of every single event. While limited by uncertainty, they may be the way to get the industry beyond the prevailing bi-wing paradigm.

The session was a nice blend of disciplines, with ample time for question and answer. I struggle though to call it a workshop, it felt like a continuation of the huge number of talks that have been going on in the same room all week. Have you ever been to a stellar workshop? What made it great? 

More from our SEG 2011 experience.

Curvelets, dreamlets, and a few tears

Day 3 of the SEG Annual Meeting came and went in a bit of a blur. Delegates were palpably close to saturation, getting harder to impress. Most were no longer taking notes, happy to let the geophysical tide of acoustic signal, and occasional noise, wash over them. Here's what we saw.

Gilles Hennenfent, Chevron

I (Evan) loved Gilles's talk Interpretive noise attenuation in the curvelet domain. For someone who is merely a spectator in the arena of domain transforms and noise removal techniques, I was surprised to find it digestable and well-paced. Coherent noise can be difficult to remove independently from coherent signal, but using dyadic partitions of the frequency-wavenumber (f-k) domain, sectors called curvelets can be muted or amplified for reducing noise and increasing signal. Curvelets have popped up in a few talks, because they can be a very sparse representation of seismic data.

Speaking of exotic signal decompositions, Ru-Shan Wu, University of California at Santa Clara, took his audience to new heights, or depths, or widths, or... something. Halfway through his description of the seismic wavefield as a light-cone in 4D Fourier time-space best characterized by drumbeat beamlets—or dreamlets—we realized that we'd fallen through a wormhole in the seismic continuum and stopped taking notes.

Lev Vernik, Marathon

Lev dished a delicious spread of tidbits crucial for understanding the geomechanical control on hydraulic fracture stimulations. It's common practice to drill parallel to the minimum horizontal stress direction to optimize fracture growth away from the well location. For isotropic linear elastic fracture behaviour, the breakdown pressure of a formation is a function of the maximum horizontal stress, the vertical stress, the pore pressure, and the fracture toughness. Unfortunately, rocks we'd like to frack are not isotropic, and need to be understood in terms of anisotropy and inelastic strains.

Lastly, we stopped in to look at the posters. But instead of being the fun-fest of awesome geoscience we were looking forward to (we're optimistic people), it was a bit of a downer and made us rather sad. Posters are often a bit unsatisfactory for the presenter: they are difficult to make, and often tucked away in a seldom-visited corner of the conference. But there was no less-frequented corner of San Antonio, and possibly the state of Texas, than the dingy poster hall at SEG this year. There were perhaps 25 people looking at the 400-or-so posters. Like us, most of them were crying.

More posts from SEG 2011.

Randomness and thin beds

Day 2 of the SEG Annual Meeting brought another 93 talks in the morning, and 103 in the afternoon, leaving us bewildered again: how to choose ten or so talks to see? (We have some ideas on this, more of which another day). Matt tried just sitting through a single session (well, almost), whereas Evan adopted the migrant approach again. These are our picks, just for you.

Stewart Trickett, Kelman

There has never been a dull or difficult talk from Stewart, one of Calgary's smartest and most thoughtful programmer–processors. He has recently addressed the hot-topic of 5D interpolation, a powerful process for making the dream of cheap, dense sampling a reality. Today, he explained why we need to now think about optimizing acquisition not for imaging, but for interpolation. And interpolation really likes pseudorandom sampling, because it helps negotiate the terms & conditions of Nyquist and avoid spatial aliasing. He went on to show a 3D subsampled then imaged three ways: remove every other shot line, remove every other shot, or remove a random shot from every pair of shots. All reduce the fold to 12% of the full data. The result: pseudorandom sampling wins every time. But don't panic, the difference in the migrated images was much smaller than in the structure stacks.

Gaynor Payton, ffA

In what could have been a product-focused marketing talk, Gaynor did a good job of outlining five easy-to-follow, practical workflows for interpreters working on thin beds. She showed frequency- and phase-based methods that exploit near-tuning, unresolved doublets in the waveform. A nice-looking bandwidth enhancement result was followed up with ffA's new high-resolution spectral decomposition we covered recently. Then she showed how negative spikes in instantaneous frequency can reveal subtle doublets in the waveform. This was extended with a skeletonized image, a sort of band-limited reflectivity display. Finally, she showed an interesting display of signed trace slope, which seemed to reveal the extent of just-resolved doublets quite nicely.

Scott Mackay, consultant

Scott MacKay shared some of his deep experience with depth imaging, but specially translated for interpreters. And this is only right: depth imaging is first and foremost an interpretive, iterative process, not a product. He gave some basic heuristics, guiding principles for interpreters. The first velocity model should be smooth—really smooth. Iterations should be only incrementally less smooth, 'creeping up' on the solution. Structure should get less, not more, complex with each step. Gathers should be flattish, not flat. Be patient, and let the data speak. And above all, Don't Panic. Always good advice.

More posts about SEG 2011.

Diffractions, Dust, and sub-Hertz imaging

Even the keenest geophysicist (and we are the keenest geophysicists) had to miss 96 presentations today. The first afternoon of talks comprised an impressive 104 talks in 13 sessions. If only 10% of talks are great, you might see one, and you would miss at least nine. Fortunately there are two of us, so we double our chances. These are our highlights.

Will Burnett, UT Austin

Diffractions, usually thought of as noise, emanate predominantly from faults and discontinuities. Will wants not to eliminate them but to use them as a complementary signal to boost imaging. His talk on diffraction velocity analysis described how, instead of picking an exact velocity model, a range of velocities are used to compute independent test images of diffraction events. Because the apex of a diffraction is the same no matter what velocity is applied, a stack of test images results in a concentration of the diffractor at the apex; the remaining events are stacked out. Blending this image with a reflection processed seismic yields a more vivid image. Also, this work was done using Madagascar... yay, open source!

Kris Pister, Dust Networks

The power of mobile devices is impressive, but Dust Networks can build an accelerometer with optical communication and a microcontroller in a 5 mm3 box. The autonomous sensors build a time-synchronized mesh protocol with channel-hopping (yeah, they do!), meaning you end up with an internet-like network that tolerates dead nodes and other failures. Now Dust build such networks of all kinds of sensors, of all sizes, in industrial applications, and surely will soon be appearing in a wellbore or seismic array near you. One to watch.

Rebecca Saltzer, ExxonMobil

Easily the most enthusiastic presentation of the day was a rip-roaring tale from Wyoming. ExxonMobil buried fifty-five low-frequency Guralp CMG3T seismometers at their LaBarge oil and gas field. The devices were arranged in a line pointing towards the Pacific, to ensure a good source of earthquakes: the source for this grand experiment. The P-waves they intended to image with have a dominant frequency of about 1 Hz, hence the seismometers, with their 0.08 to 50 Hz bandwidth. And image they did: the result was a velocity model with 500 m vertical resolution and good agreement with a 1000-well velocity model.

More posts about SEG 2011.

Frontiers at the Forum

The SEG Forum was the main attraction on Day 1 of the SEG Annual Meeting in San Antonio. Several people commented that the turnout was rather poor, however, with no more than 400 people sitting in the Lila Cockrell Theatre, even at the start. Perhaps the event needs more publicity. There was plenty of time for questions from the audience, all of which the panel discussed quite candidly.

David Lawrence, Executive VP of Exploration and Commercial at Shell gave, predictably, a rather dry corporate presentation. We understand how presentations like this get hijacked by lawyers and corporate communications departments, but wish more executives would stand up to their captors, especially for a short presentation to a technical audience. Despite his shackles, he had some eyebrow-raising technology to brag about: futuristic autonomous-vehicle marine nodes, and a million-channel sensor network, a project development they're developing with HP, of all companies.

Tim Dodson, Executive VP of Exploration at Statoil and once Matt's boss there, seemed similarly held captive by his corporation's presentation sanitizers. Saved by his charisma, Tim characterized Statoil's steady approach in exploration: deep pockets, patience, and being comfortable with risk. They seem to have the same approach to technology innovation, as Tim highlighted their Source Rock from Seismic method for characterizing source rocks and the high-resolution spectral decomposition technology we wrote about recently. Both projects took several years to develop, and have paid off in discoveries like Aldous and Skrugard respectively.

Susan Cunningham, Senior VP of Exploration at Noble Energy, spoke about her company's approach to frontier exploration. Despite her chronic use of buzz-phrases (innovative thinking, integrated objective assessment, partner of choice), Susan gave a spirited outlook on the human angles of Noble's frontier thinking. She discussed Noble's perseverance in the Eastern Mediterranean 8.5 Tcf Tamar discovery in the Levant Basin, and went on to describe Noble as a large company in a small company framework, but we're not sure what that means. Is it good?

Carl Trowell, president of WesternGeco and the youngest panelist, was the most engaging (and convincing) speaker. Shell's corporate communications people need to see presentations like this one: more powerful and trustable for its candid, personal, style. As you'd expect, he had deep insight into where seismic technolology is going. He lamented that seismic is not used enough in risk mitigation for frontier wells; for example, borehole seismic-while-drilling, imaged in the time it takes to trip out of the hole, can help predict pore pressure and other hazards in near-real-time. His forward-looking, energetic style was refreshing and inspiring.

It was a slightly dry, but basically up-beat, kick-off to the meeting. Some high-altitude perspective before we helicopter down to the nitty-gritty of the talks this afternoon.

Click here for all the posts about SEG 2011

Broken ice

Click for the latest newsUntil today, I was an SEG virgin; I can now see what all the fuss is about.

The SEG Annual Meeting is big. Massive. And it feels important, or at least significant. It is clear that exploration geophysics lives here. Every step takes you past something cool... there's FairfieldNodal's seismic node exhibit, and here's Transform Software's stained-glass-window spectral display. And every other step is like flicking through an issue of Geophysics... there's Sergey Fomel, here's Öz Yilmaz. Although I know only a few people here, I have a stong feeling of familiarity and belonging. I like it. No: I love it.

I taught my writing course this morning. It was the smallest course in the world, with a grand total of three students of the written word. Fortunately, they turned out to be wonderful company, and taught me at least twice as much as I taught them. We spent much of the morning talking about new directions in science writing, openness in industry and academia, and the competition for attention. The SEG showed considerable faith in me and my subject matter in offering this course, because it has faltered before over the years. But clearly something needs to change if we agree to offer it again... It seems that honing soft skills is not what people are looking for. Perhaps a course like mine is better suited to online consumption in bite-size webcasts. Or maybe I just needed more elliptic partial differential equations.

What do you think of courses like this? Too fluffy? Too long? Too boring?

Click here for all the posts about SEG 2011

Follow the SEG conference

The eighty-first annual meeting of the Society of Exploration Geophysicists (SEG) will be held in San Antonio next week. The technical session will hold over 600 oral poster presentations, and the exposition hall will be hosted by more than 350 companies, government agencies, research and educational institutions. More than 8000 people from 85 countries will attend.

Whether you are roaming on-site, or stuck in your office, find out what people are saying, what's happening, and get involved in the conversation. You can follow live updates throughout the week by coming back to this post or searching for the hashtag #SEG11 using Twitter's search.


If you are going to the conference, consider sharing your ideas and engaging with this community. Or tell us what you think by leaving a comment.

Click here for all the posts about SEG 2011