Hacking in Houston

geohack_2017_banner.png

Houston 2013
Houston 2014
Denver 2014
Calgary 2015
New Orleans 2015
Vienna 2016
Paris 2017
Houston 2017... The eighth geoscience hackathon landed last weekend!

We spent last weekend in hot, humid Houston, hacking away with a crowd of geoscience and technology enthusiasts. Thirty-eight hackers joined us on the top-floor coworking space, Station Houston, for fun and games and code. And tacos.

Here's a rundown of the teams and what they worked on.

Seismic Imagers

Jingbo Liu (CGG), Zohreh Souri (University of Houston).

Tech — DCGAN in Tensorflow, Amazon AWS EC2 compute.

The team looked for patterns that make seismic data different from other images, using a deep convolutional generative adversarial network (DCGAN). Using a seismic volume and a set of 2D lines, they made 121,000 sub-images (tiles) for their training set.

The Young And The RasLAS

William Sanger (Schlumberger), Chance Sanger (Museum of Fine Arts, Houston), Diego Castañeda (Agile), Suman Gautam (Schlumberger), Lanre Aboaba (University of Arkansas).

State of the art text detection by Google Cloud Vision API

State of the art text detection by Google Cloud Vision API

Tech — Google Cloud Vision API, Python flask web app, Scatteract (sort of). Repo on GitHub.

Digitizing well logs is a common industry task, and current methods require a lot of manual intervention. The team's automated pipeline: convert PDF files to images, perform OCR with Google Cloud Vision API to extract headers and log track labels, pick curves using a CNN in TensorFlow. The team implemented the workflow in a Python flask front-end. Check out their slides.

Hutton Rocks

Kamal Hami-Eddine (Paradigm), Didi Ooi (University of Bristol), James Lowell (GeoTeric), Vikram Sen (Anadarko), Dawn Jobe (Aramco).

hutton.png

Tech — Amazon Echo Dot, Amazon AWS (RDS, Lambda).

The team built Hutton, a cloud-based cognitive assistant for gaining more efficient, better insights from geologic data. Project includes integrated cloud-hosted database, interactive web application for uploading new data, and a cognitive assistant for voice queries. Hutton builds upon existing Amazon Alexa skills. Check out their GitHub repo, and slides.

Big data > Big Lore 

Licheng Zhang (CGG), Zhenzhen Zhong (CGG), Justin Gosses (Valador/NASA), Jonathan Parker (Marathon)

The team used machine learning to predict formation tops on wireline logs, which would allow for rapid generation of structure maps for exploration play evaluation, save man hours and assist in difficuly formation-top correlations. The team used the AER Athabasca open dataset of 2193 wells (yay, open data!).

Tech — Jupyter Notebooks, SciPy, scikit-learn. Repo on GitHub.

Free near surface

free_surface.png

Tien-Huei Wang, Jing Wu, Clement Zhang (Schlumberger).

Multiples are a kind of undesired seismic signal and take expensive modeling to remove. The project used machine learning to identify multiples in seismic images. They attempted to use GAN frameworks, but found it difficult to formulate their problem, turning instead to the simpler problem of binary classification. Check out their slides.

Tech — CNN... I don't know the framework.

The Cowboyz

Mingliang Liu, Mohit Ayani, Xiaozheng Lang, Wei Wang (University of Wyoming), Vidal Gonzalez (Universidad Simón Bolívar, Venezuela).

A tight group of researchers joined us from the University of Wyoming at Laramie, and snagged one of the most enthusiastic hackers at the event, a student from Venezuela called Vidal. The team attempted acceleration of geostatistical seismic inversion using TensorFlow, a central theme in Mingliang's research.

Tech — TensorFlow.

Augur.ai

Altay Sensal (Geokinetics), Yan Zaretskiy (Aramco), Ben Lasscock (Geokinetics), Colin Sturm (Apache), Brendon Hall (Enthought).

augur.ai.JPG

Electrical submersible pumps (ESPs) are critical components for oil production. When they fail, they can cause significant down time. Augur.ai provides tools to analyze pump sensor data to predict when pumps when pump are behaving irregularly. Check out their presentation!

Tech — Amazon AWS EC2 and EFS, Plotly Dash, SigOpt, scikit-learn. Repo on GitHub.

disaster_input.png

The Disaster Masters

Joe Kington (Planet), Brendan Sullivan (Chevron), Matthew Bauer (CSM), Michael Harty (Oxy), Johnathan Fry (Chevron)

Hydrologic models predict floodplain flooding, but not local street flooding. Can we predict street flooding from LiDAR elevation data, conditioned with citizen-reported street and house flooding from U-Flood? Maybe! Check out their slides.

Tech — Python geospatial and machine learning stacks: rasterio, shapely, scipy.ndimage, scikit-learn. Repo on GitHub.

The structure does WHAT?!

Chris Ennen (White Oak), Nanne Hemstra (dGB Earth Sciences), Nate Suurmeyer (Shell), Jacob Foshee (Durwella).

Inspired by the concept of an iPhone 'face ageing' app, Nate recruited a team to poke at applying the concept to maps of the subsurface. Think of a simple map of a structural field early in its life, compared to how it looks after years of interpretation and drilling. Maybe we can preview the 'aged' appearance to help plan where best to drill next to reduce uncertainty!

Tech — OpendTect, Azure ML Studio, C#, self-boosting forest cluster. Repo on GitHub.


Thank you!

Massive thanks to our sponsors — including Pioneer Natural Resources — for their part in bringing the event to life! 

sponsors_tight.png

More thank-yous

Apart from the participants themselves, Evan and I benefitted from a team of technical support, mentors, and judges — huge thanks to all these folks:

  • The indefatigable David Holmes from Dell EMC. The man is a legend.
  • Andrea Cortis from Pioneer Natural Resources.
  • Francois Courteille and Issam Said of NVIDIA.
  • Carlos Castro, Sunny Sunkara, Dennis Cherian, Mike Lapidakis, Jit Biswas, and Rohan Mathews of Amazon AWS.
  • Maneesh Bhide and Steven Tartakovsky of SigOpt.
  • Dave Nichols and Aria Abubakar of Schlumberger.
  • Eric Jones from Enthought.
  • Emmanuel Gringarten from Paradigm.
  • Frances Buhay and Brendon Hall for help with catering and logistics.
  • The team at Station for accommodating us.
  • Frank's Pizza, Tacos-a-Go-Go, Cali Sandwich (banh mi), Abby's Cafe (bagels), and Freebird (burritos) for feeding us.

Finally, megathanks to Gram Ganssle, my Undersampled Radio co-host. Stalwart hack supporter and uber-fixer, Gram came over all the way from New Orleans to help teams make sense of deep learning architectures and generally smooth things over. We recorded an episode of UR at the hackathon, talking to Dawn Jobe, Joe Kington, and Colin Sturm about their respective projects. Check it out!


[Update, 29 Sep & 3 Nov] Some statistics from the event:

  • 39 participants, including 7 women (way too few, but better than 4 out of 63 in Paris)
  • 9 students (and 0 professors!).
  • 12 people from petroleum companies.
  • 18 people from service and technology companies, including 5 from Schlumberger!
  • 13 no-shows, not including folk who cancelled ahead of time; a bit frustrating because we had a long wait list.
  • Furthest travelled: James Lowell from Newcastle, UK — 7560 km!
  • 98 tacos, 67 burritos, 96 slices of pizza, 55 kolaches, and an untold number of banh mi.

Looking ahead to SEG

SEGAM-logo-2017.jpg

The SEG Annual Meeting is coming up. Next week sees the festival of geophysics return to the global energy capital, shaken and damp but undefeated after its recent battle with Hurricane Harvey. Even though Agile will not be at the meeting this year, I wanted to point out some highlights of the week.

The Annual Meeting

The meeting will be big, as usual: 108 talk sessions, and 50 poster and e-presentation sessions. I have no idea how many presentations we're talking about but suffice to say that there's a lot. Naturally, there's a machine learning session, with the following talks:

The Geophysics Hackathon

Even though we're not at the conference, we are in Houston this weekend — for the latest edition of the Geophysics Hackathon! The focus was set to be firmly on 'machine learning', but after the hurricane, we added the theme of 'disaster recovery and mitigation'. People are completely free to choose whatever project they'd like to work on; we'll be ready to help and advise on both topics. We also have some cool gear to play with: a Dell C4130 with 4 x NVIDIA P100s, NVIDIA Jetson TX1s, Amazon Echo Dots, and a Raspberry Shake. Many, many thanks to Dell EMC and Pioneer Natural Resources and all our other sponsors:

sponsors_tight.png

If you're one of the 70 or so people coming to this event, I'm looking forward to seeing you there... if you're not, then I'm looking forward to telling you all about it next week.


Petrel User Group

icons-petrel.png

Jacob Foshee and Durwella are hosting a Petrel User Group meetup at The Dogwood, which is in midtown (not far from downtown). If you're a user of Petrel — power user or beginner, it doesn't matter — and you're interested in making the most of technology, it'd be good to see you there. Apart from anything else, you'll get to meet Jacob, who is one of those people with technology superpowers that you never know when you might need.


Rock Physics Reception

Tuesday If you've never been to the famous Rock Physics Reception, then you're missing out. It's your best shot at bumping into the luminaries of rock physics — Colin Sayers, Stefan Gelinsky, Per Avseth, Marco Perez, Bill Goodway, Tad Smith — you know the sort of thing. If the first thing you think about when you wake up in the morning is Lamé's second parameter, RSVP right now. Hurry: there are only a handful of spots left.


There's more! Don't miss:

  • The Women's Network Breakfast on Wednesday.
  • The Wiki Committee meeting on Wednesday, 8:00 am, Hilton Room 344B.
  • If you're an SEG member, you can go to any committee meeting you like! Find one that matches your interests.

If you know of any other events, please drop them in the comments!

 

Isn't everything on the internet free?

A couple of weeks ago I wrote about a new publication from Elsevier. The book seems to contain quite a bit of unlicensed copyrighted material, collected without proper permission from public and private groups on LinkedIn, SPE papers, and various websites. I had hoped to have an update for you today, but the company is still "looking into" the matter.

The comments on that post, and on Twitter, raised some interesting views. Like most views, these views usually come in pairs. There is a segment of the community that feels quite enraged by the use of (fully attributed) LinkedIn comments in a book; but many people hold the opposing view, that everything on the Internet is fair game.

I sympathise with this permissive view, to an extent. If you put stuff on the web, people are (one hopes) going to see it, interpret it, and perhaps want to re-use it. If they do re-use it, they may do so in ways you did not expect, or perhaps even disagree with. This is okay — this is how ideas develop. 

I mean, if I can't use a properly attributed LinkedIn post as the basis for a discussion, or a YouTube video to illustrate a point, then what's really the point of those platforms? It would undermine the idea of the web as a place for interaction and collaboration, for cultural or scientific evolution. 

Freely accessible but not free

Not to labour the point, but I think we all understand that what we put on the Internet is 'out there'. Indeed, some security researchers suggest you should assume that every email you type will be in the local newspaper tomorrow morning. This isn't just 'a feeling', it's built into how the web works. most websites are exclusively composed of strictly copyrighted content, but most websites also have conspicuous buttons to share that copyrighted content — Tweet this, Pin that, or whatever. The signals are confusing... do you want me to share this or not? 

One can definitely get carried away with the idea that everything should be free. There's a spectrum of infractions. On the 'everyday abuse' end of things, we have the point of view that grabbing randoms images from the web and putting the URL at the bottom is 'good enough'. Based on papers at conferences, I suspect that most people think this and, as I explained before, it's definitely not true: you usually need permission. 

At the other end of the scale, you end up with Sci-Hub (which sounds like it's under pressure to close at the moment) and various book-sharing sites, both of which I think are retrograde and anti-open-access (as well as illegal). I believe we should respect the copyright of others — even that of supposedly evil academic publishers — if we want others to respect ours.

So what's the problem with a bookful of LinkedIn posts and other dubious content? Leaving aside for now the possibility of more serious plagiarism, I think the main problem is simply that the author went too far — it is a wholesale rip-off of 350 people's work, not especially well done, with no added value, and sold for a hefty sum.

Best practice for re-using stuff on the web

So how do we know what is too far? Is it just a value judgment? How do you re-use stuff on the web properly? My advice:

  • Stop it. Resist the temptation to Google around, grabbing whatever catches your eye.
  • Re-use sparingly, only using one or two of the real gems. Do you really need that picture of a casino on your slide entitled "Risk and reward"? (No, you definitely don't.)
  • Make your own. Ideas are not copyrightable, so it might be easier to copy the idea and make the thing you want yourself (giving credit where it's due, of course).
  • Ask for permission from the creator if you do use someone's stuff. Like I said before, this is only fair and right.
  • Go open! Preferentially share things by people who seem to be into sharing their stuff.
  • Respect the work. Make other people's stuff look awesome. You might even...
  • ...improve the work if you can — redraw a diagram, fix a typo — then share it back to them and the community.
  • Add value. Add real insight, combine things in new ways, surprise and delight the original creators.
  • And finally, if you're not doing any of these things, you better not be trying to profit from it. 

Everything on the Internet is not free. My bet is that you'll be glad of this fact when you start putting your own stuff out there. We can all do our homework and model good practice. This is especially important for those people in influential positions in academia, because their behaviours rub off on so many impressionable people. 


We talked to Fernando Enrique Ziegler on the Undersampled Radio podcast last week. He was embroiled in the 'bad book' furore too, in fact he brought it to many people's attention. So this topic came up in the show, as well as a lot of stuff about pore pressure and hurricanes. Check it out...

x lines of Python: Global seismic data

Today we'll look at finding and analysing global seismology data with Python and the wonderful seismology package ObsPy, from Moritz Beyreuther, Lion Krischer, and others originally at the Geophysical Observatory in Munich.

We've used ObsPy before to load SEG-Y files into Python, but that's not its core purpose. These tools are typically used by global seismologists and earthquake scientists, but we're going to download and analyse data from three non-earthquakes:

  1. A curious landslide and tsunami in Greenland.
  2. The recent nuclear bomb test in North Korea.
  3. Hurricane Irma's passage through the Caribbean.

We'll also look at an actual earthquake. This morning there was a very large earthquake off Mexico, killing at least 15 people. It's the first M8+ earthquake anywhere since the Illapel event, Chile, on 16 September 2015.

Only 4 lines?

Once you have ObsPy, only 4 lines of code (not counting imports) are needed to download and plot a seismic trace. Here's how to instantiate the ObsPy client using the IRIS data service, then get 5 minutes of waveform data from the Mudanjiang or MDJ station on the IC network, the New China Digital Seismograph Network, and finally plot it:

from obspy.clients.fdsn import Client
client = Client("IRIS")

from obspy import UTCDateTime
t = UTCDateTime("2017-09-03_03:30:00")
st = client.get_waveforms("IC", "MDJ", "00", "BHZ", t, t + 5*60)
st.plot()  
ObsPy_IC-MDJ.png

Pretty awesome, right? One day getting seismic and well data will be this simple! LOL


Check out the Jupyter Notebook! I cannot get this notebook to run on Azure Notebooks I'm afraid, so the only way to run it is to set up Python and Jupyter (best way: install Canopy or Anaconda) on your machine. I urge you to give it a go, because what could be more fun than playing around with decades of seismic data from all over the world?

90 years of well logs

Today is the 90th anniversary of the first well log. On 5 September 1927, three men from Schlumberger logged the Diefenbach [sic] well 2905 at Dieffenbach-lès-Wœrth in the Pechelbronn heavy oil field in the Alsace region of France.

The site of the Diefenbach 2905 well. © Google, according to terms.

The site of the Diefenbach 2905 well. © Google, according to terms.

Pechelbronn_log_plot.png

The geophysical services company Société de Prospection Électrique (Processes Schlumberger), or PROS, had only formed in July 1926 but already had sixteen employees. Headquartered in Paris at 42, rue Saint-Dominique, the company was attempting to turn its resistivity technology to industrial applications, especially mining and petroleum. Having had success with horizontal surface measurements, the Diefenbach well was the first attempt to measure resistivity in a wellbore. PROS went on to become Schlumberger.

The resistivity prospecting system had been designed by the Schlumberger brothers, Conrad (1878–1936, a professor at École des Mines) and Maurice (1884–1953, a mining engineer), over the period from about 1912 until 1923. The task of adapting the technology was given to Henri Doll (1902–1991), Conrad's son-in-law since 1923, and the Alsatian well was to be the first field test of the so-called "electrical coring" method. The client was Deutsche Erdöl Aktiengesellschaft, now DEA of Hamburg, Germany.

As far as I can tell, the well — despite usually being called "the Pechelbronn well" — was located at the site of a monument at the intersection of Route de Wœrth with Rue de Preuschdorf in Dieffenbach-lès-Wœrth, about 3 km west of Merkwiller-Pechelbronn. Henri Doll logged the well with Roger Jost and Charles Scheibli. Using rudimentary equipment, they logged about 145 m of the 488-metre hole, starting at 279 m MD, taking a reading every metre and plotting the log by hand. Yesterday I digitized this log; download it in LAS format here


Pechelbronn_thumbnail.png

The story of what the Schlumberger brothers and Henri Doll achieved is fascinating; I recommend reading Don Hill's brief history (2012) — it's free to read at Wiley. The period of invention that followed the Pechelbronn success was inspiring.

If you're looking at well logs today, take a second to thank Conrad, Maurice, and Henri for their remarkable idea.

PS If you're interested in petroleum history, the AOGHS page This Week is worth a look.


The French television programme Midi en France recorded this segment about the Pechelbronn field in 2014. The narration is in French, "The fields of maize gorge on sunshine, the pumps on petroleum...", but there are some nice pictures to look at.

References and bibliography

Clapp, Frederick G (1932). Oil and gas possibilities of France. AAPG Bulletin 16 (11), 1092–1143. Contains a good history of exploration and production from the Oligocene sands in Pechelbronn, up to about 1931 (the field produced up to 1970). AAPG Datapages.

Delacour, Jacques (2003). Une technique de prospection minière et pétrolière née en Pays d'Auge. SABIX 34, September 2003. Available online.

École des Mines page on Conrad Schlumberger at annales.org.

Hill, DG (2012). Appendix A: Historical Review (Milestone Developments in Petrophysics). In: Buryakovsky, L, Chilingar, GV, Rieke, HH, and Shin, S (2012). Petrophysics: Fundamentals of the Petrophysics of Oil and Gas Reservoirs, John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9781118472750.app1. A nice potted history of well logging, including important dates.

Musée Français du Pétrole website, http://www.musee-du-petrole.com/historique/

Pike, B and Duey, R (2002). Logging history rich with innovation. Hart's E&P Magazine. September 2002. Available online. Interesting article, but beware: there are one or two inaccuracies in this article, and I believe the image of the well log is incorrect.