What is AVO-friendly processing?

It's the Geophysics Hackathon next month! Come down to Propeller in New Orleans on 17 and 18 October, and we'll feed you and give you space to build something cool. You might even win a prize. Sign up — it's free!

Thank you to the sponsors, OpenGeoSolutions and Palladium Consulting — both fantastic outfits. Hire them.

AVO-friendly processing gets called various things: true amplitude, amplitude-friendly, and controlled amplitude, controlled phase (or just 'CACP'). And, if you've been involved in any processing jobs you'll notice these phrases get thrown around a lot. But seismic geophysics has a dirty little secret... we don't know exactly what it is. Or, at least, we can't agree on it.

A LinkedIn discussion in the Seismic Data Processing group earlier this month prompted this post:

I can't compile a list of exactly which processes will harm your AVO analysis (can anyone? Has anyone??), but I think I can start a list of things that you need to approach with caution and skepticism:

  • Anything that is not surface consistent. What does that mean? According to Oliver Kuhn (now at Quantec in Toronto):
Surface consistent: a shot-related [process] affects all traces within a shot gather in the same way, independent of their receiver positions, and, a receiver-related [process] affects all traces within a receiver gather in the same way, independent of their shot positions.
  • Anything with a window — spatial or temporal. If you must use windows, make them larger or longer than your areas and zones of interest. In this way, relative effects should be preserved.
  • Anything that puts the flattening of gathers before the accuracy of the data (<cough> trim statics). Some flat gathers don't look flat. (The thumbnail image for this post is from Duncan Emsley's essay in 52 Things.)
  • Anything that is a sort of last resort, post hoc attempt to improve the data — what we might call 'cosmetic' treatments. Things like wavelet stretch correction and spectral shaping are good for structural interpreters, but not for seismic analysts. At the very least, get volumes without them, and convince yourself they did no harm.
  • Anything of which people say, "This should be fine!" but offer no evidence.

Back to my fourth point there... spectral shaping and wavelet stretch correction (e.g. this patented technique I was introduced to at ConocoPhillips) have been the subject of quite a bit of discussion, in my experience. I don't know why; both are fairly easy to model, on the face of it. The problem is that we start to get into the sticky question of what wavelets 'see' and what's a wavelet anyway, and hang on a minute why does seismic reflection even work? Personally, I'm skeptical, especially as we get more used to, and better at, looking at spectral decompositions of stacked and pre-stack data.

Divergent paths

I have seen people use seismic data with very different processing paths for structural interpretation and for AVO analysis. This can happen on long-term projects, where the structural framework depends on an old post-stack migration that was later reprocessed for AVO friendliness. This is a bad idea — you won't be able to put the quantitative results into the structural framework without introducing substantial error.

What we need is a clinical trial of processing algorithms, in which they are tested against a known model like Marmousi, and their effect on attributes is documented. If such studies exist, I'd love to hear about them. Come to think of it, this would make a good topic for a hackathon some day... Maybe Dallas 2016?

The hack is back: learn new skills in New Orleans

Looking for a way to broaden your skills for the next phase of your career? Need some networking that isn't just exchanging business cards? Maybe you just need a reminder that subsurface geoscience is the funnest thing ever? I have something for you...

It's the third Geophysics Hackathon! The most creative geoscience event of the year. Completely free, as always, and fun for everyone — not just programmers. So mark your calendar for the weekend of 17 and 18 October, sign up on your own or with a team, and come to New Orleans for the most creative 48 hours of your career so far.

What is a hackathon?

It's a fun, 2-day event full of geophysics and tech. Most people participate in teams of up to 4 people, but you can take part on your own too. There's plenty of time on the first morning to find projects to work on, or maybe you already have something in mind. At the end of the second day, we show each other what we've been working on with a short demo. There are some fun prizes for especially interesting projects.

You don't have to be a programmer to join the fun. If you're more into geological interpretation, or reservoir engineering, or graphic design, or coming up with amazing ideas — there's a place for you at the hackathon. 

FAQ

  • How much does it cost? It's completely free!
  • I don't believe you. Believe it. Coffee and tacos will be provided. Just bring a laptop.
  • When is it? 17 and 18 October, doors open at 8 am each day, and we go till about 5.30.
  • So I won't miss the SEG Icebreaker? No, we'll all go!
  • Where is it? Propeller, 4035 Washington Avenue, New Orleans
  • How do I sign up? Find out more and register for the event at ageo.co/geohack15

Being part of it all

If this all sounds awesome to you, and you'll be in New Orleans this October, sign up! If you don't think it's for you, please drop in for a visit and a coffee — give me a chance to convince you to sign up next time.

If you own or work for an organization that wants to see more innovation in the world, please think about sponsoring this event, or a future one.

Last thing: I'd really appreciate any signal boost you can offer — please consider forwarding this post to the most creative geoscientist you know, especially if they're in the Houston and New Orleans area. I'm hoping that, with your help, this can be our biggest event ever.